REDUCTION OF ACETYLENE TO ETHYLENE CATALYZED BY THE REDUCED SPECIES OF ${\rm [Fe_4S_4(SPh)_4]}^{2-}$ AND ${\rm [Mo_2Fe_6S_9(SPh)_8]}^{3-}$: A MODEL REACTION TO NITROGENASE

Koji TANAKA, Masahiro TANAKA, and Toshio TANAKA*

Department of Applied Chemistry, Faculty of Engineering,

Osaka University, Suita 565

Reduction of acetylene to ethylene is catalyzed by $[Fe_4S_4(SPh)_4]^{n-}$ ($[4-Fe]^{n-}$, n=3, 4) or $[Mo_2Fe_6S_9(SPh)_8]^{m-}$ ($[Mo-Fe]^{m-}$, m=4, 5) produced by controlled potential electrolysis of $[4-Fe]^{2-}$ or $[Mo-Fe]^{3-}$ in MeOH/THF and in H_2O . The catalytic activity increases in the order $[Mo-Fe]^{4-}$ << $[4-Fe]^{3-} \simeq [Mo-Fe]^{5-} < [4-Fe]^{4-}$.

Nitrogenase is well known to catalyze the reduction not only of dinitrogen but also of a variety of small unsaturated molecules, such as C_2H_2 , N_3 , HCN, etc. In the absence of any substrates nitrogenase reduces protons to H_2 and the amount of H_2 evolved is diminished in the presence of substrates. In particular, C_2H_2 saturated in solutions consumes almost all electrons transferred from nitrogenase and practically inhibits H_2 evolution. Thus, the examination of H_2 evolution accompanied by the reduction of substrate seems to be very important in nitrogenase model reactions. It has recently been reported that $[4-Fe]^{3-}$ can reduce C_2H_2 in the presence of CH_3COOH as a proton source to give C_2H_4 in a 60% yield, but there is no description on H_2 evolution. This letter reports the reduction of C_2H_2 to C_2H_4 catalyzed by the electrochemically reduced species of $[4-Fe]^{2-}$ (1) or $[Mo-Fe]^{3-}$ (2) and the concomitant evolution of H_2 .

Catalyst	[4-Fe] ³⁻	[4-Fe] ³⁻	[4-Fe] ⁴⁻	[4-Fe] ⁴⁻	[Mo-Fe] ⁵⁻	[Mo-Fe] ⁵⁻
Potential ^a	-1.25	-1.25	-1.60	-1.60	-1.25	-1.25
Substrate	none	С ₂ Н ₂	none	с ₂ н ₂	none	с ₂ н ₂
Activity for C ₂ H ₄ ^b		0.012		0.069		0.011
Activity for H ₂ ^b	0.015	~0	0.086	0.003	0.004	~0

Table 1. Reaction Conditions and the Activity of Catalysts in MeOH/THF

Controlled potential electrolysis at the reduction potentials of $[4-Fe]^{2-}$ or $[Mo-Fe]^{3-}$ (Table 1) was carried out in a MeOH/THF (1:1 v/v, 40 cm³) solution containing the tetrabutylammonium salt of $[4-Fe]^{2-}$ (48 µmol) or $[Mo-Fe]^{3-}$ (24 µmol) and LiCl (9.6 mmol) as a supporting electrolyte. reaction cell consisted of three compartments; a working electrode of Hg, an auxiliary electrode separated from the working electrode by a glass frit, and a SCE reference electrode. reaction occurred between $[4-Fe]^{2-}$ or $[Mo-Fe]^{3-}$ and MeOH as a proton source, the reduced species of $[4-Fe]^{2-}$ or $[Mo-Fe]^{3-}$ was capable of reducing protons arising from MeOH to evolve H_2 . The rate of H_2 evolution increased in the order $[Mo-Fe]^{5-} < [4-Fe]^{3-} < [4-Fe]^{4-}$ (Table 1). The H_2 evolution, however, was drastically depressed in the controlled potential electrolysis of $[4-Fe]^{2-}$ or $[Mo-Fe]^{3-}$ in MeOH/THF saturated with C_2H_2 . Alternatively, the reduction of C_2H_2 took place to evolve C_2H_4 . It should be noted that no H_2 evolution practically occurred in the reaction of $\mathrm{C_{2}H_{2}}$ with $\mathrm{[4-Fe]}^{3-}$ or $\mathrm{[Mo-Fe]}^{5-}$ in MeOH/THF as in the reaction with nitrogenase.⁷⁾ In addition, the rate of ${\rm C_2H_2}$ reduction with ${\rm [Mo-Fe]}^{5-}$ was found to be fairly faster than that of ${\rm H_2}$ evolution in the absence of C_2H_2 . This result indicates that $\mathrm{C_2H_2}$ is reduced more easily than protons

As shown in Fig. 1, there was found a

with [Mo-Fe]⁵⁻.

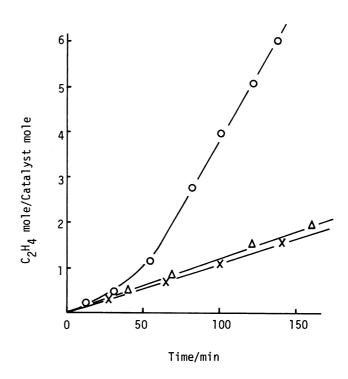
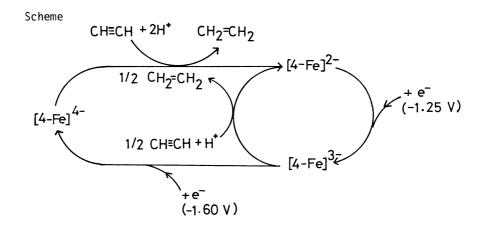



Figure 1. Plots of $(C_2H_4 \text{ mole})/(\text{catalyst mole})$ vs. time in the presence of [4-Fe]⁴⁻ (o), [4-Fe]³⁻ (Δ) , or $[Mo-Fe]^{5-}(X)$.

 $^{^{\}rm b}$ ${\rm C_2H_4}$ or ${\rm H_2}$ mole/(min. catalyst mole). a V vs. SCE.

linear relation between the amount of C_2H_4 produced and the reaction time in the reaction of C_2H_2 with $[4-Fe]^{n-}$ (n = 3, 4) or $[Mo-Fe]^{5-}$, suggesting that the reaction proceeds catalytically. A gentle grade indicated by the circle for the initial period of 50 min is probably due to the catalytic reduction with a mixture of $[4-Fe]^{4-}$ and $[4-Fe]^{3-}$, the latter of which may be formed in the rapid electron transfer reaction between $[4-Fe]^{4-}$ and $[4-Fe]^{2-}$ in solution (Eq. 1, 2). After

$$[4-Fe]^{2-} \xrightarrow{+2e^{-}(-1.60 \text{ V})} [4-Fe]^{4-}$$
 (1)

$$[4-Fe]^{4-}$$
 + $[4-Fe]^{2-}$ \xrightarrow{fast} 2 $[4-Fe]^{3-}$ (2)

the lapse of 50 min, the reaction is catalyzed by $[4-Fe]^{4-}$ and the rate is about six times faster than that with $[4-Fe]^{3-}$ or $[Mo-Fe]^{5-}$, the latter two showing almost the same catalytic activity in the C_2H_2 reduction, though the activity toward H_2 evolution are somewhat different. Most probable catalytic cycles of the C_2H_2 reduction with $[4-Fe]^{n-}$ are shown in Scheme. On the other hand, $[Mo-Fe]^{4-}$ exhibited very little catalytic activities toward both C_2H_2 and proton reductions. The product in the reaction of C_2H_2 with $[4-Fe]^{n-}$ (n = 3, 4) or $[Mo-Fe]^{5-}$ contained a small amount of C_2H_6 . The ratio of C_2H_6 to C_2H_4 in the gaseous phase, however, was very low (< 0.7%), as reported for the nitrogenase reaction (< 0.01%) 3,7,8)

It has been reported that nitrogenase catalyzes the reaction of C_2H_2 with D_2O to produce cis- $C_2D_2H_2$ predominantly⁷⁾ and $C_6H_5C\equiv CC_6H_5$ is reduced by the $[4-Fe]^2$ -NaBH $_4$ system to give stilbene $(cis:trans=70:3).^9)$ On the contrary, the reaction of C_2H_2 with MeOD (99.5%) catalyzed by $[4-Fe]^4$ in MeOD/THF afforded various deuterated ethylenes, as shown in Fig. 2a. The distribution of partially deuterated ethylenes produced in the reaction catalyzed by $[4-Fe]^3$ or $[Mo-Fe]^5$ in the same solvent was essentially identical. No stereoselectivity for the formation of cis- or $trans-C_2D_2H_2$ has, however, been observed. This result may be due to the H-D exchange between C_2H_2

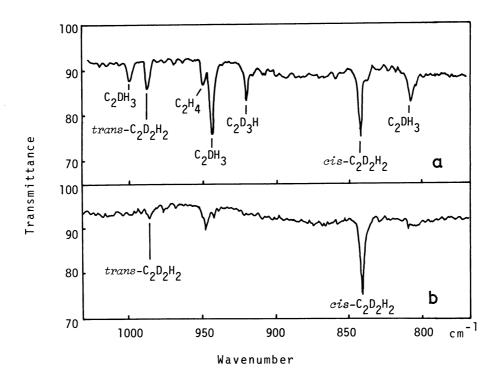


Figure 2. IR spectra of the gaseous products in the reaction of C_2H_2 with MeOD (a) and of C_2D_4 with H_2O at pH = 6.0 (b), catalyzed by $[4-Fe]^{4-}$.

and MeOD in MeOD/THF, as confirmed by the facts that a large amount of C_2DH (677 cm⁻¹) was found unreacted from the ir spectrum of the gaseous phase and the mass spectrum of the gaseous products showed the existence of C_2D_4 species. In order to depress the H-D exchange, the controlled potential electrolysis at -1.60 V was carried out for a C_2D_2 saturated aqueous suspension of $[4-Fe]^{2-}$ at pH = 6.0 \pm 0.2. Under this condition, stereoselectivity apparently increased to yield $cis-C_2D_2H_2$ predominantly, as shown in Fig. 2b.

References

- 1) R. C. Burns and W. A. Bulen, Biochim. Biophys. Acta, 105, 437 (1965).
- 2) R. W. F. Hardy, E. Knight, and A. J. D'Eustachio, Biochem. Biophys. Res. Commun., 20, 539 (1965).
- 3) R. W. F. Hardy, R. D. Holsten, E. K. Jackson, and R. C. Burns, Plant Physiol, 43, 1185 (1968).
- 4) R. S. McMillan, J. Renaud, J. G. Reynolds, and R. H. Holm, J. Inorg. Biochem., 11, 213 (1979).
- 5) B. A. Averill, T. Herskovitz, R. H. Holm, and J. A. Ibers, J. Am. Chem. Soc., 95, 3523 (1973).
- 6) G. Christou, C. D. Garner, F. E. Mabbs, and T. J. King, J. Chem. Soc., Chem. Commun., 1978, 740.
- 7) M. J. Dilworth, Biochim. Biophys. Acta, 127, 285 (1966).
- 8) R. Schollhorn and R. H. Burris, Natl. Acad. Sci. U.S., 58, 213 (1967).
- 9) T. Itoh, T. Nagano, and M. Hirobe, Tetrahedron Lett., 21, 1343 (1980).